
Multiprocessing for Pd

Miller Puckette
University of California, San Diego

msp@ucsd.edu

Abstract

A newpd˜ object has been added to Pd (version 0.42) to al-
low users to embed separate Pd processes inside each other,
so that the OS can schedule the processes on separate CPUs.
This paper discusses the design of pdĩn the context of a gen-
eral reflection on real-time media computation.

1 Introduction

Now that it’s getting hard to buy a fast uniprocessor, it be-
comes interesting to be able to run Pd (or anything else CPU
intensive) efficiently on multiprocessors. Pd is an especially
tricky case because it has to run in real time, and also be-
cause the applications it is used in are so widely varied. On
the other hand, the “dataflow” character of Pd makes paral-
lelization somewhat easier than it would be in an environment
(such as a database system or even a traditional programming
environment) in which transactions have return values.

2 Pd programming model and sched-
uler

The basic orientation of Pd is computing audio signals,
and its design reflects that closely. Pd’s fundamental unit of
time is a tick, defined to be 64 audio samples. What Pd does,
when it runs, is to run a loop in which it (1) checks for mes-
sages from input devices or timeouts; (2) reads a tick’s worth
of audio input; (3) runs its DSP objects forward one tick; and
(4) writes a tick’s worth of audio output. Anything that is
not audio (video, for example) is dealt with under the audio-
driven scheduler, and so in effect it is resampled, with some
irregularity, to the audio clock (i.e., frames look like a se-
quence of audio sample time stamps.)

Audio ticks have time stamps, but time resolution for mes-
sages in Pd is finer than that, being at least fine enough to
distinguish individual audio samples. (Time stamps in Pd are
implemented as double floating point numbers and so should
have at least sample resolution for the first few thousand years

of running time). Messages occur at specific time stamps
which may be equal to a tick’s time stamp or not; although
all such messages are processed between ticks of audio pro-
cessing, they are nonetheless processed in order of increasing
time stamp, and objects such asvline˜ can use time stamps
to offer sub-sample-accurate control over audio computation.

Inputs from I/O devices may generate messages in Pd;
in this case, it is up to the device handler to assign an ap-
propriate time stamp to the message. This is usually only
done to the accuracy of a tick. (In Pd’s implementation to-
day, this assignment of time stamps is quite sloppily done
and needs improvement!) Messages resulting from timeouts
(such as from thedelay object) are timed “exactly” except
for the possibility of truncation error in the time stamp. To
avoid these truncation errors the time stamps are scaled so
that samples and milliseconds are both realized as integers,
so that any combination of ticks and millisecond delays can
be represented exactly.

Pd patches can measure time usingtimer objects. These
do not measure “real” time intervals, but differences between
time stamps of messages. As a result of this and some other
precautions, Pd patches run deterministically in that, if one is
run twice with inputs (if any) that are the same and receive
the same time stamps, the two results will be identical.

2.1 Batch processing; an aside

The real world need not be considered as a real-time de-
vice tied in real time to Pd via FIFOs. If we get rid of the
real world, what is left is batch processing. As of Pd 0.42, the
“-batch” flag is available in Pd to allow a single Pd process
to run without audio input or output. This can be useful for
writing shell-based scripts that process soundfiles through Pd
patches.

2.2 FIFOs to the real world

The Pd scheduler makes sure that computation correspond-
ing to a given time stamp occurs approximately at the corre-
sponding “real” (external) time. This is accomplished by ty-
ing Pd’s audio sample inputs and outputs to the ”real world”

over a pair of FIFOs:

audio
------- FIFOs --------

REAL	------>	
WORLD		Pd
	<------	

------- ---------

Here the ”real world” generates samples of audio input
and receives samples of audio output at a continuous rate. The
Pd process, on each scheduler tick, reads one tick of audio
input and writes one tick of audio output. The sum of the
number of sample frames in the two FIFOs is thus a constant
that may be specified at startup. This amount, which can be
converted to units of time, is thelatency(L) of the Pd process.

Viewed in these terms, if the input FIFO has at least a
tick’s worth of samples in it, the Pd process is runnable, in
the sense that it may read input and write output without hav-
ing to wait. When the FIFO contains less than one full tick,
Pd can’t run and has to wait for more input samples. In this
situation the output FIFO contains nearly the entire latency’s
worth of samples (up to about one tick less). Put another
way, Pd is then computing samplesL time units ahead of
when they will be heard, or yet again, Pd’s time stamp has
advanced to real time plusL, which is as far in advance of
real time as Pd will compute audio.

On the other hand, Pd can get behind in its computation,
and this has the effect that the number of input samples avail-
able increases and the number of samples in the output FIFO
decreases. This is no problem unless the output FIFO empties
entirely, so that there is no sample available to provide to the
real world. In this case Pd’s computation is late; the sound
output either skips or repeats (depending on the audio hard-
ware and driver). If Pd’s current time stamp is one tick ahead
of real time, Pd is not late yet. So when things are running
correctly, the currently computing time stamp can wander as
far asL ahead of real time.

Even if things aren’t running correctly in the real-time
sense, Pd still maintains deterministic audio and message com-
putation - in Pd’s programming model, everything is fine ex-
cept that the real world is running at the wrong speed.

2.3 The Max/FTS way

The FTS (“faster than sound”) system ran on IRCAM’s
ISPW system, from about 1990 to 1995 (Puckette 1991). The
ISPW had 6 processors each running at 40 MHz. FTS was
perhaps the first real-time multiprocessing system for audio
that could mix real-time control and audio computations de-
terministically, and it did so using an extension of the FIFO
model shown above. In FTS, the real world and the six pro-
cessors were joined in a 7-node complete graph as shown
(with only two CPUs instead of the six):

------- --------
REAL	--->	
WORLD		CPU
	<---	

------- ---------
\ \ ˆ |

\ \ | | FIFOs for
\ \ | | audio and

\ \ | v messages
\ \ --------

\ | |
\ | CPU |

\ | |

Each processor was assigned a latency that the user be-
lieved was at least as large as the amount that that proces-
sor could get behind in its calculations. The round-trip delay
between any processor and the real world was simply that
processor’s latency; the round-trip delay between two given
processors was the sum of their two latencies.

In FTS, the FIFOs between processors carried not only
audio signals but also Max-style messages. On each tick,
each processor read all the messages going to it for that tick;
carried out all the message processing for the tick, possibly
engendering messages to the FIFOs to other processors; and
then read all the audio signals for the tick, did one tick of
DSP computation, and wrote the resulting audio to each of its
output FIFOs.

The number of audio signals streaming down any given
FIFO was variable, because the user could add or delete audio
connections while the system was running. This was tricky to
code because the addition and deletion of audio signals in
any FIFO had to be carefully synchronized between the two
processors at the ends of the FIFO.

The “real world” was different from other CPUs only in
that, first, it had no assigned latency, and second, it only sent
and received audio, not messages. To be totally correct, con-
trol I/O should have also been sent to the processors over the
FIFOs, but it was much easier in practice to handle control
I/O ad hoc.

The Max/FTS system had a centralized patch editor (Max)
that resided on an entirely different processor (that of the
NeXT machine host) whereas, in Pd, the editor resides on
the processor (and in the process) that also does the real-time
computation. Since there is only one such process, there is
no need to make a multi-processor distributed editor, which
would probably have been prohibitively hard to write.

2.4 Can’t it just be automatic?

In Max/FTS, the allocation of different parts of a multi-
window patch was handled by the user, who was responsible
for deciding which window should run on which processor.
All the objects in any particular window ran on the same pro-
cessor; i.e., there was no fine-grained assignment of objects

to CPUs, but only assignment of windows to CPUs.
Since at least 1990, users and critics of Max/FTS have

observed that it would be desirable for objects to be automat-
ically allocated to processors in a way that would minimize
the bandwidth of interconnections between the objects. This
would free the user from the cumbersome task of understand-
ing the actual flow of data between objects in the patch; the
software would automatically assess that.

This didn’t prove practical, for two reasons. First, as has
long been well known, one can’t compute the quantity of data
that will flow between any given pair of objects in a patch (at
least, not if the patching language is able to solve arbitrary
computing problems). Predicting how much data will flow
where is hopeless.

The second problem is that nobody has been able to make
an expressive patching language that doesn’t depend on ob-
jects sharing data. In Max/FTS (and in Pd as well) this takes
the form of “named” objects such as arrays. Any automatic
distribution of patches that allows accessing arrays wouldhave
to place every object that accesses any particular array on the
same processor, or else use some kind of locking mechanism
that would be unlikely to work in real time. Also, any situ-
ation in which there is of recombination of message fanout
would require that both message paths be synchronized, i.e.,
that both message paths go through the same itinerary of pro-
cessors or be otherwise delay-equalized. In combination, these
constraints would require that, for complete transparency, al-
most any interesting patch would have to reside on a single
processor. It appears to be an inescapable fact that multipro-
cessing has non-hideable effects on the execution of “patches”
and can’t effectively be carried out without the user’s active
participation.

3 Embedding Pd in Pd

Pd was originally intended to run on single-processor sys-
tems. This was a good choice for the first ten years of Pd’s
existence (1996-2006), but lately the processor pushers are
making it hard not to buy multiprocessors—the fastest unipro-
cessors on the market are apparently slower than even a sin-
gle processor on the current 2-processor lines. The last three
years have seen no growth to speak of in uniprocessor perfor-
mance. Although the CPU manufacturers are making louder
and louder claims about their CPUs’ increasing performance
per watt, in fact they are building machines that function pri-
marily as high-wattage memory architectures optimized to
serve multiprocessors at the expense of uniprocessors. Wattage
is increasingly offloaded from the CPU onto the motherboard,
which must of course be designed to deal with the maximum
possible number of “cores” that are compatible with any par-
ticular socket specification—no matter that anyone who only

needs a uniprocessor will also pay (especially in wattage) for
a support infrastructure designed for a multiprocessor.

A good response to this state of affairs might be to em-
brace multiprocessing, but only somewhat cautiously, as one
would embrace a porcupine. Thepd˜ object is an attempt to
extend Pd to allow using the extra CPU cycles that a multi-
processor offers, but in a way that doesn’t assume that multi-
processing is the great answer to all our computing problems.
The approach taken is partly inspired by a desire to change
Pd itself as little as possible.

Thepd˜ object simply embeds one Pd process inside an-
other, allowing the OS to determine what CPU to run which
process on. (If the processes are CPU intensive, presumably
the scheduler will tend to run them on different CPUs.) The
embedded Pd sub-process has no direct access to audio de-
vices. Instead,adc˜ anddac˜ objects in the sub-process
read and write audio from the audio inlets and outlets of the
pd˜ object in the originating super-process. This is managed
by setting up a pair of FIFOs from the super-process to the
sub-process, so that a setup with onepd˜ object would look
like this:

------- ------- -------
REAL	--->		--->	
WORLD		CPU		CPU
	<---		<---	

------- ------- -------

Adding morepd˜ objects and their sub-processes would
expand this into a rooted tree structure. Most likely, a typical
application would have only one super-process with the de-
sired number of sub-processes immediately hanging from it,
making a star shape. Compared with the FTS picture, this has
the disadvantage of higher audio latencies between the sub-
processes and the Real World, and also in communications
between sub-processes, all of which traffic must pass through
the super-process which then adds its own latency. (There is
also an extra stage of copying the signals, adding CPU load,
compared with Max/FTS.)

The sub-process gets its own editor (unless this is sup-
pressed using the -nogui flag), and the user has to manage
separate Pd documents for separate processes. This wasn’t
necessary in Max/FTS because, there, the editor was a sepa-
rate process that managed all the distributed parts of a global
patch.

The Max/FTS complete-graph model would be hard to
reproduce in Pd, for the above reason and one other practical
one: it is very hard in off-the-shelf OSes to simultaneously
control FIFO fill points between the audio driver and more
than one process. On the ISPW this was feasible only because
the audio driver was designed (by Bennett Smith) to work
with Max/FTS.

3.1 Messages in the FIFOs

The FIFOs connecting the main Pd process with the “Real
World” carry audio only and are maintained by the operating
system; but the FIFOs between Pd super-processes and sub-
processes carry both audio and messages. In this way, the or-
dering between audio and message computation is maintained
across FIFOs, and so is message order specified by “trigger”
objects and the like. The result is fully deterministic (with the
proviso, as before, that the Real World act consistently).

At the user level, in the super-process, messages can be
sent to thepd˜ object that specify any “receive” or other
named object on the sub-process, and a message to forward
to it. In the sub-process, a “stdout” object gives an explicit
portal to the super-process; messages sent to “stdout” appear
at a message outlet on thepd˜ object on the super-process.

3.2 Implementation

The implementation ofpd˜ only requires a standard ex-
ternal object and a plug-in scheduler. (However, it was neces-
sary to slightly adjust the scheduler API to make it all work;
the changes appeared in Pd version 0.42.) The implementa-
tion code lives in the “extra” directory, thereby leaving open
the possibility of introducing a better mechanism someday
without losing backward compatibility. Two files, “pd˜ .c”
and “pdsched.c”, supply the object itself and the plug-in sched-
uler for the sub-process.

The FIFOs are implemented as regular Unix pipes. (The
current implementation therefore only runs on OSes that of-
fer pipes; how to getpd˜ running in Microsoft’s OS is un-
clear). The audio signals and messages are simply converted
to ASCII for transmission down the pipes. Although, strictly
speaking, the messages should be individually time-tagged,
in this implementation the messages are simply assigned the
logical time of the most recent audio block (in effect quan-
tizing logical time). The messages are followed by an empty
message (an extra ASCII semicolon) which heralds the begin-
ning of the next audio block. The audio block is also termi-
nated by a semicolon, which announces the next tick’s worth
of messages.

The workings of thepd˜ object can be described by what
it does at startup, on receiving messages, at DSP ticks, and at
shutdown, as follows:

Startup:
create send and return FIFOs (pipes);
create sub-process, passing user-supplied arguments;
write L ticks’ worth of zeroes to the "send" pipe;
read and dispatch a tick’s messages from "return" pipe

Message:
write the message to the "send" pipe

DSP:
write signal inputs to "send" pipe;

read an audio tick from "return" pipe to signal outlets;
read the next tick’s worth of messages from "return" pipe

and save them as NEXT-MESSAGES;
set a timer (clock_delay(0)) to the present logical time

(to get called back right after the DSP tick is done)

Timer:
copy NEXT-MESSAGES to the message outlet

Shutdown:
close the two pipes;
wait() for subprocess to exit

The scheduler for the sub-process acts as a single routine
that dispatches messages and DSP ticks, blocking as neces-
sary to wait for input data. The routine works as follows:
start GUI (unless disabled)
while (not EOF on input pipe)
begin

read a (semicolon terminated) audio tick from input FIFO
advance logical time one tick (runs DSP and clock timeouts)
poll for messages to or from GUI;
print DSP audio output (dac˜ buffers) to output FIFO;
read one tick’s messages from input FIFO and dispatch them

end

3.3 Current status

Thepd˜ object compiles and runs as a Pd or Max object
(the Max version is fun: it runs Pd patches inside Max ones).
There are still some problems that need ironing out, though.
Since the sub-process’s scheduler is slaved to DSP ticks in
the super-process, the sub-process freezes whenever DSP is
turned off in the super-process. More seriously, there is a
possibility of deadlock if the data in the FIFOs ever exceeds
their combined sizes; pipes in UNIX are typically buffered
to somewhere around 8K bytes. Even if only one of the two
FIFOs blocks, real-time performance suffers.

It is too bad that the user has to specify at startup whether
the sub-process is to have a GUI or not. It is best to suppress
it for performances, but if something goes wrong it would be
good to be able to start the GUI up on the fly. A restartable
GUI would be desirable for other reasons anyway.

It’s unclear how the ideas described here would hold up if
Pd were being used to process images instead of (or in addi-
tion to) audio. One ramification of making image processing
work the same as audio would be the loss of a simple and
centralized mechanism for measuring time and scheduling.

In its current state,pd˜ is most easily used for offloading
things like voice banks that are highly CPU intensive but have
relatively simple communications with the rest of a patch. It
is less clear how more “intelligent” sorts of processing canbe
offloaded to other processes.

References
Puckette, M. S. (1991). Fts: A real-time monitor for multiproces-

sor music synthesis.Computer Music Journal 15(3), 58–67.

