
(This is a .pdf version of the tutorial posted here)

To explain this filter as a purely real filter (not an implementation of a complex filter) would
require a longer explanation of the z-transform, as the simple approach I gave above doesn't
really work in this case. The reason being is that the filter needs to be described using two
difference equations (because of that one-sample feedback loop in the imaginary section that
is within the overall two-sample loop). For the sake of clarity, I'm going to make these
substitutions/names:

€

c1 = rcosω
c2 = rsinω

€

y1 = real output

€

y2 = imaginary output

The equations become:

€

y1[n] = x[n]+ c1y1[n −1]− c2y2[n −1]
y2[n] = c2y1[n −1]+ c1y2[n −1]

We can see one sample delays here, but they're in two equations. If we find the transfer
function that gives us

€

y1[n], we can see exactly the order of that specific section, and even
find a way to implement it without the need for

€

y2[n]. However, the z-transform as explained
earlier is just a shortcut for when you have a simple single-difference-equation filter. It
doesn't cut it here. You have to do it the long way.

THE Z-TRANSFORM-extended

When we are in the z-domain,

€

X(z) is the z-transform of the input, and

€

Y (z) is the z-
transform of the output (

€

z itself can be an arbitrary complex number that you can plug in to
find useful information about the system, but we don't care here. It's just a variable). Since
we are assuming an arbitrary input, we don't know what either of these are, nor to we really
care about that either. What we are trying to find is what causes

€

X(z) to become

€

Y (z). That
is

€

H(z) : the transfer function of the filter. In the z-domain, the basic formula looks like this:

€

Y (z) = H(z)X(z)

In other words, the z-transform of the input times the z-transform of the filter function gives
us the z-transform of the output. So, of course, a little algebra gives the basic formula of the
transfer function:

€

H(z) =
Y (z)
X(z)

Remember that. This is the goal when implementing the z-transform.

In the time domain, some thing like

€

x[n − k] is a mathematical way of saying "the input

delayed by

€

k samples". In the z-domain, the same thing is said as

€

z−kX(z) .

€

z−k applies a
delay of

€

k samples, and

€

X(z) is the z-transformed signal that the delay is applied to. This is
really all the z-transform itself is. Once we do that, it's just simple algebra to get to

€

H(z) .

To illustrate, let's do a simple example:

€

y[n] = b0x[n]+ b1x[n −1]+ a1y[n −1]

First, we do the transformation:

€

Y (z) = b0X(z) + b1z
−1X(z) + a1z

−1Y (z)

Again, we're trying to find

€

H(z) =Y (z) /X(z) here, so we need to rearrange it to get

€

Y (z) /X(z) on one side.

€

Y (z) − a1z
−1Y (z) = b0X(z) + b1z

−1X(z)

Y (z) 1− a1z
−1() = X(z) b0 + b1z

−1()
Y (z)
X(z)

=
b0 + b1z

−1

1− a0z
−1 = H(z)

And there you have it. As you can see, that lines up with the simple explanation given earlier,
and also explains why the

€

y[n] coefficients change sign while the

€

x[n] ones don't.

Hopefully you can also see why it is so useful for manipulating compared to difference
equations. In the time domain, the delay and the signal are linked.

€

y[n] and

€

y[n −1] are

separate things. However, in the z-domain,

€

Y (z) and

€

z−1Y (z) allow you to extract

€

Y (z). You
can pull the signal away from the delay!

APPLYING TO MULTIPLE DIFFERENCE EQUATIONS

So let's see how to use our newfound knowledge of the z-transform to find the transfer
function of a filter that requires multiple difference equations using the one katjav provided.
I'll copy the equations again here so you don't have to scroll up:

€

y1[n] = x[n]+ c1y1[n −1]− c2y2[n −1]
y2[n] = c2y1[n]+ c1y2[n −1]

We want to know the transfer function that gives us the output

€

y1[n]. First things first, let's
transform and roll out! (You knew a Transformers reference was coming at some point, let's
be real with ourselves.)

€

Y1(z) = X(z) + c1z
−1Y1(z) − c2z

−1Y2(z)
Y2(z) = c2Y1(z) + c1z

−1Y2(z)

We want to find the

€

H(z) for the output that gives us

€

y1[n], so we need to get to

€

Y1(z) /X(z) . But first, we need to isolate

€

Y2(z) in the second equation:

€

Y2(z) = c2Y1(z) + c1z
−1Y2(z)

Y2(z) − c1z
−1Y2(z) = c2Y1(z)

Y2(z) 1− c1z
−1() = c2Y1(z)

Y2(z) =
c2

1− c1z
−1









 Y1(z)

Now that we know

€

Y2(z) , we can substitute it into the first equation and find

€

Y1(z) /X(z) . It
gets a little messy here, so I'll try not to skip any not-so-obvious steps, for clarity. Hopefully
you can follow. Let me know if I screw up somewhere or if something isn't clear:

€

Y1(z) = X(z) + c1z
−1Y1(z) −

(c2z
−1)c2

1− c1z
−1 Y1(z)

Y1(z) − c1z
−1Y1(z) +

c2
2z−1

1− c1z
−1 Y1(z) = X(z)

Y1(z) 1− c1z
−1 +

c2
2z−1

1− c1z
−1









 = X(z)

Y1(z)
X(z)

=
1

1− c1z
−1 +

c2
2z−1

1− c1z
−1











Y1(z)
X(z)

=
1

1− c1z
−1

1− c1z
−1 −

1− c1z
−1()c1z−1

1− c1z
−1 +

c2
2z−1

1− c1z
−1













Y1(z)
X(z)

=
1− c1z

−1

1− c1z
−1 − c1z

−1 + c1
2z−2 + c2

2z−2 + c2
2z−1

Y1(z)
X(z)

=
1− c1z

−1

1+ c2
2 − 2c1()z−1 + c2

2z−2

And there you have it. Assuming I did that right, that's a second-order filter with two poles
and one zero. At least, it is in the z-domain. That's why I said "I believe the short answer is
yes" in the beginning and then made you read through all of that. ;-p

.mmb

