
This tutorial is going to be a crash course in going from a difference-equation 
representation of a filter to a filter using Pd's "raw" filters. The raw filters are 
[rzero~], [rpole~], [czero~], and [cpole~] (there's also [rzero-rev~] and 
company, but we won't be using them here). It won't go into detail on 
everything and will likely be overwhelming if you're new to filter design or 
the math involved, but hopefully it will get you started, help you understand 
some basic concepts needed for filter design, and/or at least clear up some 
things. 
 
NOTATION 
 
I'll first start with a simple first-order difference equation to explain the 
notation I'll be using and to give the basics of what you should be seeing in 
the equation: 
 

€ 

y[n] = b0x[n]+ b1x[n −1]+ a1y[n −1] 
 

€ 

x[n] (read: “x of n”) refers to input, and 

€ 

y[n] refers to output. 

€ 

n is the 
current sample, 

€ 

n −1 is the previous, and so forth. 

€ 

bm  (read: “b sub m”) are 
the coefficients of 

€ 

x[n −m], and 

€ 

am are the coefficients of 

€ 

y[n −m]. Using 

€ 

bm  
for 

€ 

x[n −m] and 

€ 

am for 

€ 

y[n −m] is the standard convention that you will 
typically see in academic papers. 
 
So another way to read this equation is "the current output is 

€ 

b0  times the 
current input plus 

€ 

b1 times the previous input plus 

€ 

a1 times the previous 
output". As such, 

€ 

am are commonly referred to as the feedback coefficients 
(since they multiply the output feeding back into the filter), and 

€ 

bm  are 
referred to as the feedforward coefficients. 
 
One way to look at 

€ 

x[n −1] is to think of it as the input delayed by one 
sample. Likewise, 

€ 

y[n − 2] would be the output delayed by two samples. So, 
as you can see, the 

€ 

m  in 

€ 

bm  and 

€ 

am matches up with the number of delayed 
samples (i.e. 

€ 

bmx[n −m]), and 

€ 

m  is the delay in samples. The order of the 
filter is the maximum delay 

€ 

m . So if you had a difference equation with 

€ 

x[n], 

€ 

x[n −1], and 

€ 

y[n − 2], it would be a second-order filter, because the maximum 
delay is 2 samples. 
 
Also, we're going to be discussing complex numbers here (numbers with a 
real and imaginary part). While you may have used 

€ 

i = −1 in math classes, I 
will be using 

€ 

j  instead. 

€ 

j is used in engineering instead of 

€ 

i , and since DSP 
is more of an engineering thing, you will come across 

€ 

j  more often when 
researching this stuff. 
 
 
RAW FILTERS 
 



Okay, now that we have notation out of the way, let's quickly look at the 
difference equations for the raw filters. 
 
[rzero~] and [czero~]: 

€ 

y[n] = x[n]− b1x[b −1] 
 
[rpole~] and [cpole~]: 

€ 

y[n] = x[n]+ a1y[n −1] 
 
NOTE THAT THE SIGNS ARE DIFFERENT. If you don't remember this, it will 
bite you in the ass later. They are different in the difference equation, but 
they line up in the z-transform, which we will discuss in the next section. 
(Don't know why they're negative, though.) 
 
The difference between [rzero~] and [czero~] is that [rzero~] uses only real 
numbers for 

€ 

b1, and the input is also real. [czero~], on the other hand, uses 
complex numbers, meaning it has a real and imaginary part. The real and 
imaginary parts are represented as separate inputs. So for a complex 
number 

€ 

x + jy , 

€ 

x would go in the left inlet and y would go in the right (you 
don't have to calculate 

€ 

j ...I mean, it isn't even real). The same is true with 
[rpole~] and [cpole~]. While most filters for audio are real filters, we will see 
later why the complex filters are important. 
 
Z-TRANSFORM 
 
The z-transform converts a difference equation in the time-domain to a 
transfer function in the z-domain. The usefulness of the z-domain is beyond 
the scope of this tutorial. But, you don't need to know everything about it for 
it to be useful here. Just accept that it works, just like you have to accept 
that imaginary numbers work and that infinity exists at least conceptually 
even though our brains are too small to comprehend, and you'll be fine. 
You'll be happy to know that doing the z-transform is much easier than 
wrapping your head around imaginary numbers, anyway. :-) 
 
The basic representation of a generic filter in the z-domain is this: 
 

€ 

H(z) =
B(z)
A(z)

 

 
Again, 

€ 

B(z)  is read "B of z". The difference between square brackets [] and 
parenthesis () is that brackets represent signals with discrete points (like a 
digital sampling rate) and parenthesis represent continuous signals (like 
analogue). It's not a huge deal here, it's just another convention. 
 
As you might have guessed, 

€ 

B(z)  is named because it represents the part of 
the difference equation with 

€ 

bm  coefficients, while 

€ 

A(z) represents the part 
with the 

€ 

am coefficients. 

€ 

H(z)  is just another naming convention for filters. 

€ 

h[n] is the impulse response in the time-domain, so 

€ 

H(z)  is the z-transform 
of the impulse response. 



 
So, how do we get from the time-domain to the z-domain? Well, it's actually 
quite simple, but it's probably easiest to explain with an example. So let's 
use the biquad filter as an example. The difference equation of a 
conventional digital biquad is this: 
 

€ 

y[n] = b0x[n]+ b1x[n −1]+ b2x[n − 2]− a1y[n −1]− a2y[n − 2] 
 
(Sidenote: [biquad~] actually reverses the signs for the feedback 
coefficients) 
 
Each of the samples in the equation gets replaced by an exponent of 

€ 

z , 
where the exponent is the delay length. Let's start by just figuring out 

€ 

B(z) . 
In this case, we get: 
 

€ 

B(z) = b0 + b1z
−1 + b2z

−2  
 
Pretty straight-forward. 

€ 

x[n −m] becomes 

€ 

z−m . (

€ 

z0 =1, which is why 

€ 

b0  stands 
alone here.) 
 
Now for the feedback part: 

€ 

A(z). With this part, 

€ 

y[n −m] becomes 

€ 

−z−m. 
Notice the signs get reversed. Also, 

€ 

a0 is actually the number that multiplies 

€ 

y[n], which is 1, and it's sign doesn't get reversed because it's on the left 
side of the difference equation. This gives us: 
 

€ 

A(z) =1+ a1z
−1 + a2z

−2 
 
So our final z-transform of the biquad filter is: 
 

€ 

H(z) =
b0 + b1z

−1 + b2z
−2

1+ a1z
−1 + a2z

−2  

 
So what we have is a second-order polynomial 

€ 

B(z)  over a second-order 
polynomial 

€ 

A(z). 
 
 
CONVERT TO FIRST-ORDER FILTERS IN SERIES 
 
The biquad is a second-order filter. The raw filters in Pd are first-order filters. 
We need to represent this second-order filter using nothing but first-order 
filters. So, we need to break it down into first-order polynomials. To do this, 
we need to find the poles and zeros. 
 
Well, let's back up a second. How can we even break this apart at all? As it 
happens, multiplication in the z-domain is the same thing as filters running in 
series in the time-domain. As a very simple example, look at it this way: 



 

€ 

H(z) =
B(z)
A(z)

=
B(z)
1

⋅
1
A(z)

 

 
In this instance, 

€ 

B(z)  is one filter, and 

€ 

1/A(z)  is another. The signal goes 
through 

€ 

B(z)  first, then 

€ 

1/A(z). But it has exactly the same output as 

€ 

B(z) /A(z). 
 
Since we're working with polynomials here, we need to factor them out into 
first-order polynomials to get first-order filters in series. To do this, we need 
to find the roots. The roots of 

€ 

B(z)  are the zeros, and the roots of 

€ 

A(z) are 
the poles. It is generally less confusing to find them if we rewrite them as 
positive exponents of 

€ 

z  instead of 

€ 

z−1. We can do this by multiplying 

€ 

H(z)  by 

€ 

z2 /z2 =1: 
 

€ 

H(z) =
b0z

2 + b1z + b2
z2 + a1z + a2

 

 
Next, we need to factor out 

€ 

b0  from 

€ 

B(z) . It's not necessary for finding the 
roots, but it will be needed later for implementation purposes. This is simply 
a matter of dividing it by 

€ 

b0 , which we will rename 

€ 

g for gain. We'll rename 

€ 

bm /b0b_m/b_0 to 

€ 

βm. 
 

€ 

H(z) = g z2 + β1z + β2
z2 + a1z + a2

 

 
 

 

 
  

 
What we now have is a quadratic equation in both the numerator and the 
denominator. Finding the roots of those equations (i.e., the value of 

€ 

z  that 
will make them equal zero) can simply be done using that quadratic formula 
we all thought was useless in high school: 
 
For 

€ 

y = ax 2 + bx + c, the roots are 
 

€ 

y =
−b ± b2 − 4ac

2a
 

 
This translates for the zeros to: 
 

€ 

q =
−β1 ± β1

2 − 4β2
2

 

 
and the poles to: 
 



€ 

p =
−a1 ± a1

2 − 4a2
2

 

 
Note that there are two answers each because of the ±. Also note that if 

€ 

b2 − 4ac < 0, you are going to end up with complex numbers as your zero or 
pole, and this is going to happen often. Once we find the zeros/poles, 

€ 

H(z)  
becomes: 
 

€ 

H(z) = g (z − q1)(z − q2)
(z − p1)(z − p2)
 

 
 

 

 
 = g

(1− q1z
−1)(1− q2z

−1)
(1− p1z

−1)(1− p2z
−1)

 

 
 

 

 
  

 
The last step just undoes the 

€ 

z2 /z2 multiplication we did earlier to bring us 
back to negative powers of 

€ 

z . But the answers are the same. If you 
substitute 

€ 

q1 for 

€ 

z , you will get 0 in both versions. 
 
AND NOW FOR THE PD IMPLEMENTATION 
 
As stated earlier, multiplication in the z-domain is the same thing as running 
filters in series. We now have four first-order polynomials and a gain. This is 
what we need to use the raw filters. Breaking it down into multiplications, we 
get: 
 

€ 

H(z) = g(1− q1z
−1)(1− q2z

−1) 1
1− p1z

−1

 

 
 

 

 
 

1
1− p2z

−1

 

 
 

 

 
  

 
Assuming the poles and zeros are complex, this is the same thing as: 
 



 
 
With a real filters, of course, you would just use the real versions and get rid 
of the imaginary patch cords. But with typical higher order audio filters, the 
zeros and poles will come in complex conjugate pairs, so you can expect to 
use the complex filters. Besides, a real number 

€ 

x = x + j0 anyway, so the 
complex ones will work in both situations. 
 
With filter orders greater than 2, the quadratic formula obviously doesn't 
hold. However, it is quite common for high-order filters to be implemented as 
a series of biquads because they are easier to work with that way 
(Butterworth and Chebychev filters work nicely as biquad series). So the 
formula may still be useful. In addition, programs like Octave or Matlab have 
functions that can find the roots of arbitrary polynomials for you for those 
difficult cases. 
 
PHEW! 
 
That might be a lot to swallow in such a short space. For something more 
thorough, I recommend the online book The Scientist and Engineer's Guide 
to Digital Signal Processing by Steven W. Smith, which actually uses very 



accessible language despite the title. It's also more than just filters. I should 
point out, however, that the author does go against convention and switches 
b_m and a_m, so watch out. But other than that, it's pretty great. Julius O. 
Smith III also has a good book on digital filters online. It's a little less 
accessible, but there's a lot there. 
 
Hopefully that didn't suck? 
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