
Real-time audio analysis tools for Pd and MSP

Miller S. Puckette, UCSD (msp@ucsd.edu)

Theodore Apel, CRCA, UCSD (tapel@ucsd.edu)

David D. Zicarelli, Cycling74 (www.cycling74.com)

Abstract

Two \objects," which run under Max/MSP or Pd, do di�erent kinds of real-time analysis of
musical sounds. Fiddle is a monophonic or polyphonic maximum-likelihood pitch detector similar
to Rabiner's, which can also be used to obtain a raw list of a signal's sinusoidal components. Bonk
does a bounded-Q analysis of an incoming sound to detect onsets of percussion instruments in a
way which outperforms the standard envelope following technique. The outputs of both objects
appear as Max-style control messages.

1 Tools for real-time audio

analysis

The new real-time patchable software synthesizers
have �nally brought audio signal processing out of the
ivory tower and into the homes of working computer
musicians. Now audio can be placed at the center
of real-time computer music production, and MIDI,
which for a decade was the backbone of the electronic
music studio, can be relegated to its appropriate role
as a low-bandwidth I/O solution for keyboards and
other input devices. Many other sources of control
\input" can be imagined than are provided by MIDI
devices. This paper, for example, explores two possi-
bilities for deriving a control stream from an incoming
audio stream.

First, the sound might contain quasi-sinusoidal
\partials" and we might wish to know their fre-
quencies and amplitudes. In the case that the au-
dio stream comes from a monophonic or polyphonic
pitched instrument, we would like to be able to de-
termine the pitch(es) and loudness(es) of the compo-
nents. It's clear that we'll never have a perfect pitch
detector, but the fiddle object described here does
fairly well in some cases.

For the many sounds which don't lend themselves
to sinusoidal decomposition, we can still get useful
information from the overall spectral envelope. For
instance, rapid changes in the spectral envelope turn
out to be a much more reliable indicator of percussive
attacks than are changes in the overall power reported
by a classical envelope follower. The bonk object does

a bounded-Q �lterbank of an incoming sound and
can either output the raw analysis or detect onsets
which can then be compared to a collection of known
spectral templates in order to guess which of several
possible kinds of attack has occurred.

The fiddle and bonk objects are low tech; the
algorithms would be easy to re-code in another lan-
guage or for other environments from the ones consid-
ered here. Our main concern is to get predictable and
acceptable behavior using easy-to-understand tech-
niques which won't place an unacceptable computa-
tional load on a late-model computer.

Some e�ort was taken to make fiddle and bonk

available on a variety of platforms. They run un-
der Max/MSP (Macintosh), Pd (Wintel, SGI, Linux)
and fiddle also runs under FTS (available on sev-
eral platforms.) Both are distributed with source
code; see http://man104nfs.ucsd.edu/~mpuckett/
for details.

2 Analysis of discrete spectra

Two problems are of interest here: getting the fre-
quencies and amplitudes of the constituent partials
of a sound, and then guessing the pitch. Our pro-
gram follows the ideas of [Noll 69] and [Rabiner 78].
Whereas the earlier pitch~ object reported in [Puck-
ette 95] departs substantially from the earlier ap-
proaches, the algorithmused here adhere more closely
to them.

First we wish to get a list of peaks with their
frequencies and amplitudes. The incoming signal is



broken into segments of N samples with N a power
of two typically between 256 and 2048. A new anal-
ysis is made every N=2 samples. For each analysis
the N samples are zero-padded to 2N samples and
a rectangular-window DFT is taken. An interesting
trick reduces the computation time roughly in half
for this setup; see the source code to see how this is
done.

If we let X[k] denote the zero-padded DFT, we
can do a three-point convolution in the frequency do-
main to get the Hanning-windowed DFT:

XH [k] = X[k]=2� (X[k + 2] +X[k � 2])=4

Any of the usual criteria can be applied to identify
peaks in this spectrum. We then go back to the non-
windowed spectrum to �nd the peak frequency using
the phase vocoder with hop 1:

! =
�

N

�
k + re

�
X[k � 2]�X[k + 2]

2X[k]�X[k � 2]�X[k + 2]

��
:

This is a special case of a more general formula de-
rived in [Puckette 98]. The amplitude estimate is
simply the windowed peak strength at the strongest
bin, which because of the zero-padding won't di�er by
more than about 1 dB from the true peak strength.
The phase could be obtained in the same way but we
won't bother with that here.

2.1 Guessing fundamental frequencies

Fundamental frequencies are guessed using a scheme
somewhat suggestive of the maximum-likelihood es-
timator. Our \likelihood function" is a non-negative
function L(f) where f is frequency. The presence
of peaks at or near multiples of f increases L(f) in
a way which depends on the peak's amplitude and
frequency as shown:

L(f) =
kX
i=0

aitini

where k is the number of peaks in the spectrum, ai is
a factor depending on the amplitude of the ith peak,
ti depends on how closely the ith peak is tuned to a
multiple of f , and ni depends on whether the peak
is closest to a low or a high multiple of f . The exact
choice of how these factors should depend on f and
the peak's frequency and amplitude is a subject of
constant tinkering.

For monophonic pitch estimation, we simply out-
put the value of f whose \likelihood" is highest. For
polyphonic pitch estimation, we successively take the
values of f of greatest likelihood which are neither
multiples nor submultiples of a previous one.

In all cases, an additional criterion is used to
make a pitched/nonpitched decision since L(f) will
always have a maximum, even when no pitch is
present. Our criterion is that there either be at least
four peaks present or else that the fundamental be
present and the total power of the contributing peaks
be at least a hundredth of the signal power.

2.2 Object design

The fiddle object has a signal input and a varying
number of control outputs depending on its creation
arguments:

fiddle [npoints] [npitches]

[npeaks-analyzed] [npeaks-output]

where npoints gives the (power of two) number of
points in each analysis window, npitches gives the
number of separate pitches to report (one by de-
fault), npeaks-analyzed gives the maximum num-
ber of peaks to consider in determining pitch (default
20) and npeaks-output gives the number of peaks
which are to be output raw. Setting npitches to zero
suppresses pitch estimation (and saves computation
time).

The outlets, from left to right, are:

� a oating-point pitch which is output when a
new, stable note is found

� a bang which is output conditionally on \at-
tacks", whether or not a pitch is found

� from 0 to 3 lists, each giving the pitch and loud-
ness of a pitch track

� the continuous signal power in dB

� a list, which iteratively sends triples giving each
peak's index, frequency, and amplitude.

The following messages print or set the fudge mix:

print print out the parameters controlled by the fol-
lowing messages:

amp-range (low) (high) set the (low) and (high)
amplitude thresholds in dB. Note-on detection
requires that the signal exceed (high); if a pitch
track's strength goes below (low) it is dropped.

reattack (time) (dB) Pitch tracks whose strength
increases by more than (dB) within (time) msec
output a new \note" message.



vibrato (time) (half-tones) warn fiddle that
the instrument is capable of vibrato. New notes
will not be reported until (time) msec have
passed with the pitch remaining within (half-
tones) of a center pitch; the center pitch is then
reported. If the instantaneous pitch di�ers by
more than (half-tones) from the reported pitch,
the search begins for a new note.

npartial (n) The jth partial is weighted as n=(n+
j) in the likelihood formula.

The following messages are also de�ned:

uzi (ono�) Turn \uzi" mode on or o�; by default
it's on. Turn it o� if you want to poll for pitch
tracks or sinusoidal components yourself; other-
wise they come out on every analysis period.

bang ... poll them.

debug turn on debugging.

The computation load of fiddle varies depend-
ing on the input signal. In an informal test, running
fiddle on a sawtooth plus white noise used 21 per-
cent of the available CPU time on a 300 MHz. Pen-
tium 2 machine running NT.

3 Bounded-Q Analysis

The bonk object was written for dealing with sound
sources for which sinusoidal decomposition breaks
down; the �rst application has been to drums and
percussion. The design emphasizes speed; the hard-
wired analysis window size is 256 samples or 5.8 msec
at 44K1; the hop size can be as low as 64 samples.

The �rst stage of analysis in bonk is a downsam-
pling FIR �lterbank of the sort described in [Brown

92]. Letting N be the window size, M = N=2, and
x[n]; n = 0; :::; N � 1 the input signal, ! a center fre-
quency and � a �lter bandwidth, we can compute the
estimated signal power at ! with bandwidth � as:

P (!; �) �
�����
T�1X
m=�T

exp i!m
1 + cos(�m)

2
x[M +m]

�����
2

where
T = d�=�e:

The minimum bandwidth we can achieve is thus
2�=N . The particular choice of frequency/bandwidth
combinations in bonk was two �lters per octave ex-
cept where prohibited by the bandwidth limit:

(!; �) = (2�=N; 2�=N ); (4�=N; 2�=N ); (6�=N; 2�=N );

(6
p
2�=N; 2

p
2�=N ); (12�=N; 4�=N );

(12
p
2�=N; 4

p
2�=N ); (24�=N; 8�=N )

and so on up to the Nyquist, giving a total of 11 �lters
for N = 256.

3.1 Detecting attacks

The most satisfying application of this analysis is in
detecting percussive attacks. The most popular way
of doing this is to use an envelope follower and look
for rapid rises in follower output; but any kind of
ringing can set o� trains of unwanted attacks, or op-
positely, can mask true attacks. The analysis used by
bonk can often detect new attacks which appear as
sharp relative changes in the spectrum without any
accompanying large change in the overall power; con-
versely, ringing instruments don't often give rapidly
changing spectra and hence don't attract bonk's at-
tention.

We de�ne a growth function as follows. For each
channel we maintain a mask m which represents the
current power in the channel. To accomplish this, af-
ter each analysis we look at the current power p. If
p > m we replace m by p; otherwise if m hasn't been
updated for more than masktime analyses (5 by de-
fault), the mask decays by multiplication by maskde-

cay (0.8). Since the default analysis interval is 3 msec,
the default mask time is about 15 msec; much shorter
than this and your kettle drum will set o� an attack
every half period.

The growth in each channel is the dimensionless
quantity,

g = max(0; p=m� 1)

which is 1 if the current power is twice the mask, for
instance. Next we add up the growth estimates for
all eleven channels. If this total exceeds hithresh (de-
fault 12), we'll report an attack. However, we don't
actually report the attack until the spectrum stops

growing, i.e., the growth must decrease to a value
below lothresh (default 6). This is done so that the
true loudness and spectrum of the new event can be
reported.

3.2 Matching spectral templates

It is also possible to ask bonk to test any new at-
tack against a menu of pre-recorded attacks in order
to guess which of several possible instruments was
responsible for the new attack. To do this, �rst we
store spectral templates for each of the instruments.
Thereafter, any new attack is compared with the
stored ones and the closest match is reported. The
underlying assumption, that there is actually some



repeatability in the spectral envelopes of attacks of
percussive instruments certainly doesn't hold true in
the real world, but it is interesting to learn which
sorts of instruments bonk can identify in this way
and which it can't.

To describe how template matching works we
�rst add indices to the variables for power and mask;
pi;mi are the power and mask for the ith channel
for i = 1; :::; 11. Now suppose si, ti, are the spec-
tra of two pre-recorded attacks normalized so that
jSj = jT j = 1 as real 11-dimensional vectors. The
simplest test would be to ask which of P � S, P � T is
greater. However, some information might be miss-
ing in P because of masking so a more appropriate
measure of agreement between P and S, for example,
is to weight each component by its \clarity" which we
measure by the growth gi; so the value of the �t be-
tween P and S is thus

(
P

gisipi)
2P

gisi2
P

gipi2
:

the template which agrees best with P in this sense
is the output reported.

3.3 The bonk object design

Like fiddle, bonk has one inlet which takes an audio
signal and messages to alter its settings and to learn,
store and recall templates:

thresh (lothresh) (hithresh) Set the attack
thresholds

mask (masktime) (maskdecay) Set the mask pa-
rameters

debounce (debounce-time) Set the minimum
time in msec between two attacks

print (more) Print the values of the parameters

and (if more) the current analysis vector

learn (ag) turn \learn" mode on or o�

write (�lename) write learned templates to a text
�le

read (�lename) read templates from a text �le

bang output current spectrum as a list

Two outputs are provided; the rightmost reports
the entire eleven-element spectrum on attacks and on
bang; the other gives the number of the best matching
template for each attack and the overall loudness of
the attack. If you just want to be able to poll the
spectrum, set the threshold to an impossible value so
bonk won't volunteer output on its own.

4 Acknowledgement

This work was generously supported by the Intel Cor-
poration. The techniques described here have evolved
over many years of collaboration with researchers and
artists, especially Mark Danks, A. Couturier Lippe,
Philippe Maunoury, Joel Settel, Vibeke Sorensen,
and Rand Steiger. The bonk and fiddle objects
described here were developed as part of Puckette,
Sorensen and Steiger's Lemma 1, shown at ICMC97,
Thessaloniki, Greece, played by George Lewis and
Steven Schick, and at UCSD by Vanessa Tomlinson
and Michael Dessen.

References

[Brown 92] Brown, J.C., and Puckette, M.S., (1992).
\An E�cient Algorithm for the Calculation of a
Constant Q Transform", J. Acoust. Soc. Am. 92,
2698-2701.

[Noll 69] Noll, A. M., 1969. \Pitch determination of
human speech by the harmonic product spec-
trum, the harmonic sum spectrum, and a max-
imum likelihood estimate." Proc. Symp. Com-
puter Proc. in Comm., pp. 779-798.

[Puckette 96] Puckette, M., 1996. \Pure Data:
another integrated computer music environ-
ment." Proc. the Second Intercollege Com-
puter Music Concerts, Tachikawa, pp. 37-
41. Reprinted as ftp://crca-ftp.ucsd.edu:

~/pub/msp/pd-kcm.ps

[Puckette 98] Puckette, M., and Brown, J., 1998.
\Accuracy of frequency estimates from the phase
vocoder." IEEE Transactions on Speech and Au-
dio Processing 6/2, pp. 166-176.

[Rabiner 78] Rabiner, L.R., and Schafer, R.W., 1978.
Digital Processing of Speech Signals. Englewood
Cli�s, N.J.: Prentice-Hall.


