
Advanced Audio Applications Project – Sample Replacer Joe White

1

Introduction

For my Advanced Audio Applications project I chose to create a Drum Replacement

application in Pure Data. Essentially the application analyses percussion data input by

the user and outputs a different sound as a replacement for the input.

Drum replacement usually arises out of the desire to change an existing sound in a

recording without the hassle of rerecording the performance. Take, for example, a

situation where after a drum recording session, the engineer realises that whilst the

performance is spot-on, the microphone on the snare was unfortunately in an

inappropriate position. Thus making the sound of the snare unsuitable for the style or

theme of the production. Rerecording the drummer would not be favourable, as it

would no doubt incur a considerable cost in time and money especially considering

the recordings are only let down by a single track. This is where drum replacement

comes in.

In the past, to rectify the situation the engineer would most likely have to go through

the track and ‘drop’ a new sample in as replacement for the previous. However, as

this is done by hand the processing time would be increased substantially. In these

situations an automated process for drum replacement is a very valuable option.

Drum replacement programs are mainly found in synchronicity with Digital Audio

Workstations, tending to appear as either plug-ins or as standalone applications. Pure

Data is a great application to develop such a program as it enables the end user to

utilise drum replacement techniques with little prerequisites.

Also it is interesting to note that these programs are not just limited to a total

replacement of the target material, but they also as an enhancement of texture/timbre

or even an incorporation of effects triggered by the source.

Advanced Audio Applications Project – Sample Replacer Joe White

2

Implementation

Input Section

The ‘Input’ section deals with importing user-selected audio and saving these files to

tables. The tables are represented as the light blue boxes in the centre of the section,

which graphically display the audio waveform. Additionally there is a timeline in dark

blue that passes over the tables to indicate a point in time at playback. The timeline

receives its data from the ‘Timeline’ abstraction in the ‘Playback’ section.

The options available to the user in this section are ‘Load’, ‘Mute’ and ‘Rec’.

 ‘Load’ opens a prompt to the user directing them to select an audio

file from their hard disk.

‘Mute’ silences the respective track. This button sends the

information to the ‘Playback’ abstraction of the ‘Transport’ section and to

the ‘Replacement’ section.

‘Rec’, which stands for Record Enable, prepares the respective track

for bouncing. It achieves this by muting the other two tracks.

Advanced Audio Applications Project – Sample Replacer Joe White

3

Input Abstraction

This abstraction houses the method to get the Input data from the user and distributes

information related to the audio files. It has two

arguments: the first being the name of the file the user

selects and the second being the table name it is to be

put in. The object here handles both

arguments and distributes them to the appropriate

message box. It also bangs the message box so that

soundfiler can deal with the file and input it to the

relevant table. After processing the file, soundfiler

outputs the size of the file in samples which is then

sent via to the

‘TrackPlayback’ abstraction in the ‘Playback’

abstraction of the ‘Transport’ section. The great thing

about using abstractions in this patch is that there is no

need to create separate sends for each track. By using

the ‘$2’ variable, the send takes it’s name from the

initialiser of the abstraction. The example in this case would be ‘s samplelength

Kick’. This reduces amount of sends needed to route the data and creates a modular

environment.

Advanced Audio Applications Project – Sample Replacer Joe White

4

Triggers Section

The ‘Triggers’ section is almost identical to the ‘Input’ section, the difference being

it loads the audio files that will act as replacement sounds. There is only a ‘Load’

button in this section as there is no need to mute or record enable the triggers. If the

user mutes any of the tracks that are triggering the samples in this section then those

samples will not play.

Another difference in this section is the inclusion of preset samples. Upon start-up

bangs a message box containing the location of some samples that can

act as triggers. This means the user can instantly start replacement of their input files.

However, if they choose to use their own samples, the process is exactly the same as it

is for the ‘Input’ section. Clicking on ‘Load’ in this section brings up a prompt to

locate the sample of choice.

Advanced Audio Applications Project – Sample Replacer Joe White

5

Transport Section

This section focuses on

playback of the audio files

and the recording of the

triggered samples. It

includes four function

buttons and four

abstractions.

The ‘Play’ button starts playback from the beginning of the tracks and stops

after one pass. It has a send-symbol called play that is sent to the ‘Playback’ and

‘Timeline’ abstractions. It also includes a receive-symbol called

loopplay from the ‘Loop’ abstraction.

‘Stop’ halts any playback happening and brings the timeline

indicator to the beginning.

The ‘Loop’ toggle creates an infinite loop that is only

interrupted by either turning the toggle off or by clicking

‘Stop’. It has sends and receives to the ‘Loop ‘ abstraction.

The ‘Record’ button allows the user to record the replacement

sounds to disk.

Advanced Audio Applications Project – Sample Replacer Joe White

6

Playback Abstraction

The ‘Playback’ abstraction enables playback of the material held in arrays. The

actual method of

playback is actually

realised in the

‘TrackPlayback’

abstraction. This

abstraction merely

routes the signal to

the input mix bus in

the ‘Mix’ abstraction

and receives the

mute function from

the ‘Input ‘ section

and cuts the signal of

the relevant track.

Record Abstraction

The ‘Record’ abstraction does the necessary routing to achieve bounces of the

replacements. It’s inlet is a bang that when

clicked prompts the user to select where they

want to save the file and the name of the

bounce. It also receives the output of the mix

bus upon playback. Once the user has

finished with the prompt the abstraction waits

100 ms and then tells to start recording while

concurrently starting

playback. It then waits for a period set by the

loop value before stopping the recording.

Advanced Audio Applications Project – Sample Replacer Joe White

7

Timeline Abstraction

The ‘Timeline’ abstraction enables to the timeline cursor in the main window to

follow audio playback. It works by calculating how long the input sample is in

milliseconds. This information is sent to a vline~ object that counts from 0 to 1 in the

time calculated. By using the samplerate~ object it is possible to take different sample

rates into account. The ‘Play’ and ‘Stop’ buttons from the ‘Transport’ section stop

and start the vline~ object. The sample length (ms) is additionally sent to the

loopvalue receiver in the ‘Loop’ abstraction.

Loop Abstraction

The ‘Loop’ abstraction enables the looping

function ability. The toggle in the ‘Transport’ section starts a metronome that ticks

away at the same speed as the length of the input audio. This means that at the exact

point the playback finishes it is restarted by a bang from the metronome.

Advanced Audio Applications Project – Sample Replacer Joe White

8

TrackPlayback Abstraction

This abstraction is core of the playback function. It works in the same way as the

‘Timeline’ abstraction with a vline~ object that is set by the sample length of the

input file. The ‘Play’ button in the ‘Transport’ section bangs the inlet of this

abstraction. The main difference in this abstraction is that it plays back the arrays of

the input files instead of the timeline. This is achieved through the use of the

tabread4~ object. The effect of multiplying the vline~ (running from 0 to 1) by the

sample length gives an index for the tabread4~ to output the audio. I also added a

spigot~ object to output. This is because when playback was stopped a click could be

heard as the counter returns to zero. Therefore I muted the output of the tabread4~

object for the length of time it took to return to zero.

Advanced Audio Applications Project – Sample Replacer Joe White

9

Replacement Section

While being fairly simple this section is the core of the trigger function. Each bonk~

object is fed a send from ‘Trackplayback’ abstraction in the ‘Playback’ abstraction

of the ‘Transport’ section. Essentially as soon as bonk~ detects there is a hit in the

audio it triggers a bang in it’s output. This in turn triggers a one-hit playback of the

samples stored in the ‘Triggers’ section. The mute button from the ‘Input’ section

also makes another appearance here. The output of this section is sent to a mix bus

for the triggers in the ‘Mix’ section.

Advanced Audio Applications Project – Sample Replacer Joe White

10

Mix Section

This is the final section in the Sample Replacer project. The ‘Mix’ section basically

gathers all the audio output in the application and sums them together before going to

the dac~. However, to add more functionality for the user I have included a mix slider

to fade in either the input mix or the trigger mix (To avoid clicks when using the

slider a low pass filter has been

implemented to the output). A

case where this is useful could

be if the user wishes to hear

how the triggers are affecting

the original audio also, if

recording, the user can add

varying amounts of either mix

to the bounce. A VU meter has

been included to give a visual

representation of the signal.

Advanced Audio Applications Project – Sample Replacer Joe White

11

Considerations

I think the Sample Replacer works very efficiently and achieves its purpose.

However, through the task of documenting the project I have come across a number

of possible bugs that might want to be dealt with in the future. When pressing the

‘Play’ button while in playback the audio plays at half the play speed. If pressed again

it would halve that speed and so on. This is because the vline~ is being told to count

at the sample rate again. However as it is not starting from the beginning the amount

of samples are being miscalculated. I have also noticed a bug that causes the timeline

cursor to twitch. This is possibly caused by the fact that the timeline is being

calculated in multiple places. To amend this the timeline should have its own

centralised function.

Some further modifications to the project in future would also increase the usefulness.

At the moment the application only really deals with single tracks. Drum replacers are

used in the majority to correct multi-tracked drum recordings. Therefore an ability to

input and process multiple tracks would be imperative. Added functionality would

also include velocity layers to the triggered samples and a clearer GUI for the ‘Mix’

section.

Furthermore, the real intention of this project was to achieve beat detection of audio

through analysis of data. However, time issues meant that what was a possibility now

looked unlikely. Therefore as a last minute decision I decided to use the bonk~ object

for audio analysis and concentrate on drum replacement.

